This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

The Reactions of the Highly Sterically Hindered Organosilicon Compound Tsisi(C,H,Me-P)Mei with Electrophilic Reagents and Synthesis Of Tsisii

Kazem D. Safa^a; Mohammad Moshiry^a; Yaghoub Haghighat Doust^a ^a Faculty of Chemistry, University of Tabriz, Tabriz, Iran

To cite this Article Safa, Kazem D., Moshiry, Mohammad and Doust, Yaghoub Haghighat (2001) 'The Reactions of the Highly Sterically Hindered Organosilicon Compound Tsisi($C_{\circ}H_{\downarrow}Me-P$)Mei with Electrophilic Reagents and Synthesis Of Tsisii,', Phosphorus, Sulfur, and Silicon and the Related Elements, 176: 1, 157 — 163

To link to this Article: DOI: 10.1080/10426500108055113 URL: http://dx.doi.org/10.1080/10426500108055113

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE REACTIONS OF THE HIGHLY STERICALLY HINDERED ORGANOSILICON COMPOUND TsiSi(C₆H₄Me-p)MeI WITH ELECTROPHILIC REAGENTS AND SYNTHESIS OF TsiSiI₃

Kazem D. Safa, Mohammad Moshiry, and Yaghoub Haghighat Doust Faculty of Chemistry, University of Tabriz, Tabriz-Iran (Received April 24, 2001)

The iodide $TsiSi(C_6H_4Me-p)MeI$ reacts with a range of silver (I) salts, AgY ($Y = OCN^-$, BF_4 , $OOCCF_3$, SO_4^{2-}) and mercury (II) salts, Hg_2Y ($Y = OCCH_3^-$, SO_4^{2-}) to give the corresponding species ($Me_3Si)_3$ $CSi(C_6H_4Me-p)MeY$ and ($Me_3Si)_2C(SiMe_2Y)SiMe_2(C_6H_4Me-p)$. The reactions with AgOCN give either the isocyanate alone or a mixture of this with the normal cyanate, depending on the reaction conditions. The reaction with $AgBF_4$ in Et_2O gives only $TsiSi(C_6H_4Me-p)MeF$ while in MeOH, EtOH or i-PrOH gives the corresponding rearranged product ($Me_3Si)_2C(SiMe_2Y)SiMe_2(C_6H_4Me-p)$ ($Y = OMe^-$, OEt^- , i-OPr $^-$). The iodide also reacts with IBr to give the rearranged bromide ($Me_3Si)_2C(SiMe_2Br)SiMe_2(C_6H_4Me-p)$. The highly sterically hindered triiodide, $TsiSiI_3$ was also synthesized.

Keywords: Silicon; steric hindrance; trisyl

INTRODUCTION

It has been shown that the presence of the tris(trimethylsilyl)methyl ("trisyl"), $(Me_3Si)_3C$ -(denoted Tsi), in compounds of the type TsiSiRR'X cause a very large steric hindrance toward electrophilic displacement of X.¹⁻⁴ In reactions of TsiSiRR'I (R = Me, R¹ = C₆H₄Me-p) species with electrophilic Ag(I)Y salts give rearranged products $(Me_3Si)_2C$ (SiMe₂Y) (SiRR'Me), either exclusively or with the unrearranged products TsiSiRR'Y.⁵ There is strong evidence that these reactions involve formation of a bridged cation of type I (the migrating Me group), which is then attacked by a nucleophilic Y⁻, with opening of the four-membered

Address correspondence to Kazem D. Safa, Faculty of Chemistry, University of Tabriz, 51664 Tabriz, Iran. E-mail: kazemdsafa@yahoo.com

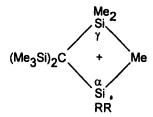


FIGURE 1

ring, at either the Si atom, attack at the least hindered center normally being favored. In this work, some other electrophilic reactions on TsiSi(C₆H₄Me-*p*)MeI with different electrophiles such as AgOCN, AgBF₄, AgO₂CCF₃, Ag₂SO₄, and AgO₂CCH₃ have been examined. The results are described below.

RESULTS AND DISCUSSION

The study began with the iodide $TsiSi(C_6H_4Me-p)MeI$, which was made as described previously by treatment of $TsiSi(C_6H_4Me-p)MeH$ with one molar proportion of ICl in carbon tetrachloride.⁶ We thought it of interest to examine its reactions with some other silver and mercury salts. The obtained results show that steric hindrance and the reactivity of the starting reagents in the reactions of iodide are the major points.

Reactions of TsiSi(C₆H₄Me-p)Mel with Silver(I) Salts

- a) Treatment of iodide with AgOCN in refluxing Et_2O gave exclusively the isocyanate $TsiSi(C_6H_4Me-p)Me(NCO)$ as judged from the presence of an IR band at 2300 cm⁻¹.⁶ However, when the reactions was carried out in CH_2Cl_2 at room temperature for 20 h, its IR spectrum showed also the band at 2300 cm⁻¹, and a band approximately at 2240 cm⁻¹ characteristic of a normal cyanate $TsiSi(C_6H_4Me-p)Me(OCN)$.^{6.7} The ratio were 2:1, respectively.
- b) In keeping with the results described above, when the iodide TsiSi $(C_6H_4Me-p)MeI$ was treated with AgBF₄ in refluxing Et₂O, the product was exclusively TsiSi $(C_6H_4Me-p)MeF$ (as judged) from the ¹HNMR spectrum.⁸
- c) The iodide was found to react with AgBF₄ in MeOH, conversion into the rearranged methoxide (Me₃Si)₂C(SiMe₂OMe)SiMe₂(C₆H₄Me-p) complete within 3 h (may be completed at less than 3 h) at room temperature. When the same iodide was stirred with AgBF₄ in EtOH

at room temperature for 3 h (3 h period used may not be necessary) gave the rearranged ethoxide $(Me_3Si)_2C(SiMe_2OEt)SiMe_2(C_6H_4Me-p)$. The iodide was also found to react with AgBF₄ in *i*-PrOH to give the rearranged isopropoxide $(Me_3Si)_2C(SiMe_2O-i-Pr)SiMe_2(C_6H_4Me-p)$ when the mixture was stirred for 4.5 h at room temperature.

- d) Reaction of TsiSi(C₆H₄Me-p)MeI with AgOCOCF₃ in refluxing Et₂O gave a mixture of rearranged product (Me₃Si)₂C(SiMe₂ OCOCF₃)SiMe₂(C₆H₄Me-p) and unrearranged product TsiSi(C₆H₄ Me-p)Me(OCOCF₃) in 3:1 ratio, respectively.
- e) Reaction of $TsiSi(C_6H_4Me-p)MeI$ with Ag_2SO_4 in glacial CH_3COOH gave mainly the rearranged acetate $(Me_3Si)_2C(SiMe_2OAc)$ $SiMe_2(C_6H_4Me-p)$.
- f) The reaction of starting iodide TsiSi(C₆H₄Me-*p*)MeI with HgSO₄ or Hg(O₂CH₃)₂ in glacial CH₃COOH also gave mainly rearranged acetate (Me₃Si)₂C(SiMe₂O₂CCH₃)SiMe₂(C₆H₄Me-*p*).

An attempt to make TsiSiAn2I by the reaction of the TsiSiAn2H with ICI by analogy with corresponding reaction of TsiSiPh₂H⁹ was unsuccessful. 10 We were aware that the HCl or HI generated would very readily cleave the Si-An bonds¹¹ and so we carried out the reaction in the presence of a large excess of AnSiMe₃ to take up the HX preferentially. This did ensure survival of the Si-An bonds of the TsiSiAn₂H, but unfortunately, the product was the chloride, not the iodide. So we carried out the reaction of TsiSiAn₂H with I₂ and Al powder since I₂-AlI₃ is a very reactive reagent, but the result showed that the An groups were cleaved off and highly sterically hindered triiodide TsiSiI₃ was obtained. When TsiSiPh2H was also treated with I2 and Al powder in benzene, the Ph groups were also cleaved off and TsiSiI3 was produced. Finally we found that the simplest way to get TsiSiI₃ is to treat TsiSiH $_3$ with I $_2$ and Al powder under the conditions used for TsiSiAn $_2$ H and TsiSiPh2H. The iodide TsiSi(C6H4Me-p)MeI was found to react with IBr in CCl₄ to give the rearranged bromide (Me₃Si)₂C(SiMe₂Br) $SiMe_2(C_6H_4Me-p).^{12,13}$

EXPERIMENTAL

Solvents and Reagents

Cyclohexane, n-pentane, n-hexane, diethylether, dichloromethane, tetrachloromethane, methanol were dried by standard methods, silver salts $Ag(I)Y(Y = OCOCF_3, OCN)$ freshly made.

Spectra

The ¹HNMR spectra were recorded on Perkin Elmer (80 MHz) with CDCl₃ as a solvent and CH₂Cl₂ or SiMe₄ as internal standard. The FT-IR spectra were recorded with KBr disk on DR 408-Shimadzu. Melting points were determined with a 9100 Electrothermal apparatus. Mass spectra were obtained with a Shimadzu-QP-100X, 70ev.

Reaction of TsiSi(C₆H₄Me-p)Mel with AgBF₄ in Et₂O

A mixture of TsiSi(C_6H_4Me-p)MeI (0.2 g, 0.4 mmol), AgBF₄ (0.155 g, 0.8 mmol) in dried Et₂O (50 ml) was stirred under reflux for 1h. The solvent was evaporated off and the residue extracted with pentane. The extract was filtered and evaporated and then the residue was recrystallized from MeOH to give TsiSi(C_6H_4Me-p)MeF (92%), m.p. 117°C. ¹HNMR (CDCl₃) 0.1 (s, 27 H, SiMe₃), 0.35 (s, 3 H, MeSi), 2.2 (s, 3 H, Me-aryl), and 6.7–7.8 ppm (m, 4 H, aryl); m/z (EI) 385 (6.8%, [M]⁺), 370 (100%, [M-Me]), 349 (4%), 277 (22.4%), 261 (21.3%), 201 (53.8%), 149 (31%), 73 (38.6%).(Found: C, 55.76; H, 9.28. $C_{18}H_{37}FSi_4$ calculated: C, 56.18; H, 9.69).

Reaction of TsiSi(C₆H₄Me-p)Mel with AgBF₄ in MeOH

A mixture of TsiSi(C_6H_4Me-p)MeI (0.24 g, 0.5 mmol) and AgBF₄ (0.38 g, 2.7 mmol) in dried MeOH (50 ml) was stirred at room temperature for 3 h. The solution was decanted from AgI and water and cyclohexane was added. The cyclohexane layer was shaken several times with water. The residue was recrystallized from MeOH and then purified further with sublimation at 100° C at 5 mmHg to give pure rearranged methoxide (Me₃Si)₂C(SiMe₂OMe)SiMe₂(C₆H₄Me-p) with properties identical to those described before,⁵ m.p. 118° C.

Reaction of TsiSi(C₆H₄Me-p)Mel with AgBF₄ in EtOH

A mixture of $TsiSi(C_6H_4Me-p)MeI$ (0.24 g, 0.5 mmol) with AgBF₄ (0.38 g, 2.7 mmol) in dried EtOH (50 ml) was stirred at room temperature for 3 h. The solution was decanted from AgI and water and cyclohexane was added. The cyclohexane layer was shaken several times with water. The viscous residue was recrystallized from EtOH to give the rearranged ethoxide (Me₃Si)₂C(SiMe₂OEt)SiMe₂(C₆H₄Me-p) (85%); m.p. 77–78°C. ¹HNMR (CDCl₃) 0.1 (s, 6 H, SiMe₂-aryl), 0.15 (s, 18 H, (SiMe₃)₂), 0.5 (s, 6 H, SiMe₂OEt), 1–1.3 (t, $\overline{3}$ H, \overline{C} H₃CH₂-), 2.2 (s, $\overline{3}$ H, \overline{M} e-aryl), 3.4–3.7 (q, 2 H, \overline{C} H₃CH₂-) and 6.7–7.8 ppm (m, 4 H, aryl).

Reaction of TsiSi(C₆H₄Me-p)MeI with AgBF₄ in i-PrOH

A mixture of TsiSi(C_6H_4 Me-p)MeI (0.24 g, 0.5 mmol) and AgBF₄ (0.38 g, 2.7 mmol) in dried i-PrOH (50 ml) was stirred at room temperature for 4.5 h. The solution was decanted from AgI and water and cyclohexane was added. The cyclohexane layer was shaken several times with water and evaporated. The viscous residue was purified by preparative TLC (silicagel 2:1 dichloromethane-cyclohexane) to give the rearranged isopropoxide (Me₃Si)₂C(SiMe₂O-i-Pr)SiMe₂(C₆H₄Me-p) (78%). ¹HNMR (CDCl₃) 0.3 (s, 18 H, (SiMe₃)₂), 0.5 (s, 6 H, SiMe₂O-i-Pr), 0.65 (s, 6 H, SiMe₂-aryl), 1.1–1.4 (d, 6 H, (CH₃)₂CH-), 2.4 (s, 3 H, Me-aryl), 3.9–4.1 (m, 1 H, (CH₃)₂CH-) and 6.7–7.8 ppm (m, 4 H, aryl).

Reaction of TsiSi(C₆H₄Me-p)Mel with Ag₂SO₄

A mixture of TsiSi(C_6H_4Me-p)MeI (0.24 g, 0.5 mmol) with Ag_2SO_4 (0.5 g, 1.6 mmol) in glacial CH_3COOH (15 ml) was refluxed for 2 h. The solution was decanted from AgI and water and cyclohexane was added. The cyclohexane layer was shaken several times with water and then evaporated. The residue was then purified by preparative TLC (silicagel 3:1 dichloromethane-cyclohexane as eluent) to give rearranged acetate $(Me_3Si)_2C(SiMe_2OAc)SiMe_2(C_6H_4Me-p)$ (80%) with properties identical to those described before.⁵

Reaction of TsiSi(C₆H₄Me-p)Mel with HgSO₄

A mixture of TsiSi(C_6H_4Me-p)MeI (0.24 g, 0.5 mmol) and HgSO₄ (0.5 g, 1.6 mmol) in glacial CH₃COOH (15 ml) was refluxed for 2.5h. The solution was decanted and water and cyclohexane was added. The cyclohexane layer was shaken several times with water and then evaporated. The residue was purified by preparative TLC (silicagel 3:1 dichloromethane-cyclohexane as eluent) to give rearranged acetate (Me₃Si)₂C(SiMe₂OAc)SiMe₂(C₆H₄Me-p) (75%) with properties identical to those described before.⁵

Reaction of TsiSi(C₆H₄Me-p)MeI with Ag(O₂CCH₃)₂

A mixture of $TsiSi(C_6H_4Me-p)MeI$ (0.24 g, 0.5 mmol) with $Ag(O_2CCH_3)_2$ (0.32 g, 1.0 mmol) in glacial CH_3COOH (15 ml) was refluxed for 2 h. The solution was decanted and water and cyclohexane was added. The cyclohexane layer was shaken several times with water and then evaporated. The residue was purified by preparative TLC (silicagel 3:1 dichloromethane-cyclohexane as eluent) to give rearranged acetate

(Me₃Si)₂C(SiMe₂OAc) SiMe₂(C₆H₄Me-*p*) (70%) with properties identical to those described before.⁵

Reaction of TsiSi(C₆H₄Me-p)Mel with IBr

A solution of IBr (0.084 g, 0.4 mmol) in CCl₄ (10 ml) was added to TsiSi(C₆H₄Me-p)MeI (0.1 g, 0.2 mmol) in CCl₄ (30 ml) and the mixture was stirred at room temperature for 4 h and then evaporated under vaccum. The residue was purified by preparative TLC (silicagel 1:1 dichloromethane-cyclohexane as eluent) to give (Me₃Si)₂C(SiMe₂Br) SiMe₂(C₆H₄Me-p) (42%);. ¹HNMR (CDCl₃) 0.2 (s, 18 H, SiMe₃), 0.55 (s, 6 H, SiMe₂Br), 1.1 (s, 6 H, SiMe₂-aryl), 2.3 (s, 3 H, Me-aryl), and 6.7–7.8 ppm (m, 4 H, aryl); m/z (EI) 445 (3.6%, [M]⁺), 430 (12.6%, [M-Me]), 367 (56.6%), 351 (26.5%), 291 (4.8%), 275 (93.9%), 73 (100%). (Found: C, 49.18; H, 9.05. C₁₈H₃₇BrSi₄ calculated: C, 48.5; H, 8.37).

Preparation of Tris(trimethylsilyI)triiodidosilane, TsiSil₃

A solution of I_2 (0.96 g, 3.81 mmol) in benzene (10 ml) was added dropwise to a mixture of $TsiSiH_3{}^2$ (0.0.5 g, 1.91 mmol) and Al powder (0.3 g, 11.11 mmol) in benzene (40 ml) at room temperature. The reaction was followed by analytical TLC. After the completion of the reaction (60h) the excess I_2 was neutralized with sodium thiosulfate. Petroleum ether (40–60) was added, then the organic layer was shaken several times with water and evaporated. The solid residue was recrystallized from cold EtOH to give pure $TsiSiI_3$ (72%); m.p. > 360°C. 1HNMR (CDCl $_3$), 0.5 (s, 9 H, SiMe $_3$) and 1.3 ppm (s, 18 H, SiMe $_3$); m/z (EI) 625 (M-Me), 513 (M-I), 425, 313, 186, 128, 73. (Found: C, 18.9; H, 4.2. $C_{10}H_{27}Si_4I_3$ calculated: C, 19.7; H, 4.3).

Reaction of TsiSi(C₆H₄OMe-p)₂H with I₂/Al

a) In a attempt to make $TsiSi(C_6H_4OMe-p)_2I$, a mixture of $TsiSi(C_6H_4OMe-p)_2H$ (0.5 g, 1.05 mmol), I_2 (0.81 g, 3.18 mmol) and Al powder (0.3 g, 11.11 mmol) in benzene (50 ml) was stirred at room temperature. The reaction was followed by analytical TLC. After the completion of the reaction (12 h) the excess I_2 was neuterized with sodium thiosulfate. Water was added followed by petroleum ether (40–60) and the organic layer was shaken several times with water and evaporated. The solid residue was recrystallized with EtOH to give pure $TsiSiI_3$, (not the expected $TsiSi(C_6H_4OMe-p)_2I)$ (72%) with properties identical to those described above; m.p. > 360°C.

b) When the procedure was repeated but starting from TsiSiPh₂H, pure TsiSiI₃ was also obtained in good yield.

ACKNOWLEDGMENT

We thank Professor C. Eaborn for helpful comments.

REFERENCES

- [1] C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organometal. Chem., 170, C1 (1979).
- [2] S. Dua, C. Eaborn, D. A. R. Happer, S. P. Hopper, K. D. Safa, and D. R. M. Walton, J. Organometal. Chem., 178, 75 (1979).
- [3] C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organometal. Chem., 188, 179 (1980).
- [4] K. D. Safa, A. R. Koushki, and M. G. Asadi, Phosphorus, Sulfur and Silicon, 158, 97 (2000).
- [5] K. D. Safa, M. Bolourchian, and M. G. Asadi, Phosphorus, Sulfur and Silicon, 149, 229 (1999).
- [6] K. D. Safa, M. G. Asadi, A. Abri, A. Mohammadpour, and H. Kiae, J. Organometal. Chem., 598, 222 (2000).
- [7] C. Eaborn, P. D. Lickiss, G. M. Chidsey, and Esther Y. Thorli, J. Chem. Soc. Chem. Commun., 1326 (1982).
- [8] Z. H. Aiube and C. Eaborn, J. Organometal. Chem., 421, 159 (1991).
- [9] C. Eaborn and S. P. Hopper, J. Organometal. Chem., 192, 27 (1980).
- [10] K. D. Safa, M. G. Asadi, and M. Sargordan, J. Organometal. Chem., 545-546, 61 (1997).
- [11] C. Eaborn, K. L. Jones, and P. D. Lickiss, J. Organometal. Chem., 466, 35 (1994).
- [12] C. Eaborn, Y. El-Kadder, and P. D. Lickiss, *Inorganica Chimica Acta*, 198–200, 337 (1992).
- [13] C. Eaborn and F. Fattah, J. Organometal. Chem., 396, 1 (1990).